DOBHAN HYDROPOWER COMPANY LIMITED CHANDOL, KATHMANDU, NEPAL

Presentation of Final Draft Report On

Detailed Design of Bailey Bridge over the Budhigandaki Khola for Dobhan Khola Hydropower Project at Dharche Rural Municipality, Gorkha

Presented by: Raman Shrestha (Structure Engineer, NEC Reg. 9101 "A" "Civil" HARMONIC ENGINEERING PVT. LTD. Kathmandu, Nepal Phone: 01-5919669,9852029669 Email: info.harmonicengineering@gmail.com

Website:- www.harmoniceng.com

Outline of Presentation

- Introduction
- Procedure for Hydrological Analysis
- Procedure for Geological and Geotechnical Investigation
- Procedure for Structural analysis and Bridge Design.
- Description of the bridge sites and specific Design
- Response to the comment from the client.

Conceptual Framework

Hydrological Procedure

Design Assumptions

1. Hydrological Analysis

2. Hydraulic Analysis

Hydrological analysis

Methods of determine flood discharge value

SN	Method	Q ₁₀ (m ³ /s)	Q20 (m³/s)				
1.0	Modified Dicken's Method	3248.649	4030.265				
2.0	WECS Method	2597.29	3014.22]			
3.0	Tahal Method	2763.406	3231.078	5			
4.0	Fuller's Method	1058.286	1199.876				
5.0	Ryves Method	1657.246					
6.0	Dredge or Burge' formula	2236.917					
Maximu	m Predicted Design Discharge	3249.000	4031.000				

Expected linear water way-270 m Planed span of bridge-42.68 m

SN Maximum Scour at Bridge	Depth (from HFL)	RL (m)
1 At Abutment	10.679	925.35

➢HFL calculated from HEC – RAS software is not applicable and Hence taking observed HFL and manage road level at left bank top level.

- Expecting foundation bottom level will not damage due to scouring.
- Maintain river bed level to soffit level of bridge for water flow is 12m.

Scour depth calculation based on IRC:78 – 2014 Design discharge = 30% increment of design flood. Mean scour depth, $d_{sm} = 1.34 \times (q^2 / Ksf)^{1/3}$ For pier, Scour depth = $2 \times d_{sm}$ For Abutment, Scour depth = $1.27 \times d_{sm}$

10 year return period value is taken as design flood.

Structural Analysis

Limit State of Design Philosophy

Codal Provision

- IRC 6-2017 For Load
- IRC 78-2014 For Foundation
- IRC 112-2020: For design of RCC and PSC Bridge
- IRC 24:2010 : For the design of Steel Truss bridge

Partial Safety Factor as per IRC 6:2017

- Partial Safety Factor for verification of Equilibrium Table B.1(IRC:6-2017)
- Partial Safety Factors for Verification of Structural Strength (Table B.2: IRC6-2017)
- Partial Safety Factors for Verification of Serviceability Limit State(Table B.3: IRC 6-2017)
- Partial Safety Factors for Checking the Base Pressure and Design of Foundation (Table B.4: IRC6-2017)

Structural Analysis

Load in Superstructure

- a) Dead Load
 - Structural Deal Load
 - Non Structural Dead Load

- a) Live Load
 - Vehicle Live Load

Structural Analysis

Load in Sub Structure and foundation

- Dead Load due to Super Structure
- Dead load of Approach slab
- Live load
- Buoyancy Force
- Braking load
- Temperature Load

- Dead load due to abutment
- Earth pressure (Static and Dynamic)
- Seismic Loading
- Load due to surcharge
- Water Current

Budhigandaki khola Bailey bridge

Salient Features of the bridge										
Name of Project	Bailey Bridge over Budhi Gandaki khola									
Name of River	Budhi Gandaki khola									
Municipality / Rural Municipality	Dharche Rural Municipality									
Name of the Road:	Connecting to Dobhan Hydropower Project from Budhigandaki Corridor									
Coordinate	28°17'45.47"N, 84°54'14.94"E									
Total length of the bridge	42.68m (Single) Standard Width (3.277 M roadway width) and (3.76 M wide from inside edge of the inner most truss)									
Types of Bridge	TSR3 or DDR Type Bailey Bridge or Fabricator propose new model									

Table-1 RECOMMENDED CONSTRUCTION FOR TWL STANDARD WIDTH BAILEY TYPE PORTABLE BRIDGE WITH STEEL DECK

Nomenclature	Width of roadways	Distance between t		SPAN (FEET)																	
		the inner most truss	(as per IRC-6)	30	40	50	60	70	80	90	100	110	120	130	<mark>140</mark>	150	160	170	180	190	200
Standard Width (SW)	3.277 M (10'-9")	3.76 M (12'-4")																			
Extra Wide (EW)	4.250 M (13'-11")	4.775 M (15'-8")	5R	55	55	SS	SS	55	55	55	55	SSR	SSR	SSR	DSR	DSR	DSR	DD	DDR	DDR	DDR
E	9780 (40/ All)	I IPRACINI	9R	SS	SS	SS	SS	SS	SSR	SSR	SSR	SSR	SSR	TS	<mark>DSR</mark>	DSR	DD	DDR	DDR	DDR	DDR
-	3760 mm (12-4")	CHORD	12R	SS	SS	SS	SS	SS	SSR	SSR	SSR	SSR	TS	DSR	<mark>DSR</mark>	DD	DD	DDR	DDR	DDR	DDR
11 11		III	18R	SS	SS	SS	SS	SSR	SSR	SSR	TS	DSR	DSR	DSR	DD	TSR	DDR	DDR	DDR	DDR	DDR
11 7		PANEL	24R	SS	SS	SSR	SSR	SSR	DS	TS	TS	DSR	DSR	DD	<mark>TSR</mark>	TSR	DDR	DDR	DDR	DDR	DDR
// -	3277 mm (10'-9")	RAKER	В	SS	SS	SS	SS	SSR	SSR	TS	DSR	DD	DD	TSR	<mark>DDR</mark>	DDR	DDR	DDR	DDR	DDR	TDR
			30R	SS	SS	DS	DS	TS	TS	DSR	DD	DD	DDR	DDR	DDR	DDR	DDR	DDR	DDR	TDR	TDR
		TRANSC	40R	DS	DS	DS	DS	DSR	DSR	DD	DD	DDR	DDR	DDR	DDR	DDR	DDR	TDR	TDR	TDR	-
			Α	SS	SS	DS	DS	DSR	DSR	DD	DD	DDR	DDR	DDR	DDR	DDR	TDR	TDR	TDR	TDR	-
	SWAY BRACE		60R	DSR	DSR	DSR	DD	DDR	DDR	DDR	TDR	TDR	TDR	TDR	TDR	TDR	TDR	-	-	-	-
457.2	3937 mm	457.2	70R	TS	TS	TS	DD	DD	TD	TD	TDR	TDR	TDR	TDR	TDR	-	-	_	-	-	-

Table 5-1. Classes of Bailey Bridge M2 (By Type of Construction and Type of Crossing)

													-								
Bridge length		SS		l	DS			TS			DD			TD			DT			тт	
(feet)	N	с	R	N	с	R	N	с	R	N	с	R	N	с	R	N	C	R	N	c	T
30	30/ /30	42/ /37	47/ /42																		1
40	24/	36/ /34	40/ /38																		t
50	/24	33/ /31	36/ /35	75/ /70	83/ /76	88/ /84															t
60	20/ /	30/ /29	33/ /32	(5/ /65	77/ /78	85/ /79															t
70	20/	24/ /	30/ /30	60/ /60	68/ /69	78/ /75															t
80	16/	20/ /	24/	50/ /55	60/ /60	66/ /64	85/ /80	95/ /90	100*/ /90*												t
90	12/	16/ /	19/ /	40/ /45	50/ /50	55/ /55	65/ /65	74/ /75	82/ /82												İ
100	8/ /	12/ /	14/	30/ /30	87/ /39	42/ /44	50/ /55	57/ /60	64/ /66	80/ /80	86/ /90	96/ /90									t
110				20/ /	30/ /32	34/ /36	35/ /40	47/ /49	52/ /54	65/ /70	72/ /76	80/ /83	90/ /90*	100*/ /90*	100*/ /90*						t
120				16/ /	23/	27/ /30	30/ /35	38/ /41	43/ /45	45/ /55	57/ /61	64/ /68	75/ /80	83/ /90*	91/ /90*						Ī
130				12/	18/	21/	20/	31/ /33	35/ /38	85/ /45	47/ /50	53/ /56	55/ /60	65/ /72	74/ /80	70/ /80	80/ /90*	90/ /90*			Γ
140				8/ /	14/	17/	16/ /	24/ /	29/ /31	30/ /35	89/ /42	44/ /48	45/ /55	57/ /62	64/ /70	70/ /70	80/ /90*	88/ /90*			Γ
150							12/	18/ /	22/ /	24/ /	32/ /35	36/ /40	35/ /45	47/ /51	54/ /58	60/ /60	77/ /85	85/ /90*			Γ
	1	1			1	1	0/	15/	17/	101	051	00 /	001	0.001							

General Arrangement with Load and length of Belly Bridge (Chinease)									
1 Design Length =	42.68	m	(140 ')						
Loading Capacity =	46	Tons							
Net Deck Width=	4.2	m							
Estimated weight=	76-78	Tons							
Configuration=	TSR3								
Brdige Type =	Extrawide ZB 200								
Preventation :	Galvanized								
2 Design Length =	45.72	m	(150 ')						
Loading Capacity =	46	Tons							
Net Deck Width=	4.2	m							
Estimated weight=	80-82	Tons							
Configuration=	TSR3								

	Table 5-3. Maximum Base-Plate and Rocking-Roller Reactions in Tons on Grillage at One Corner of Bridge										
ss	Span in feet Safe capacity Caution capacity Base-plate reaction ¹ Rocking-roller reaction ²	30 40 55 31 5.7	40 32 45 26 7.4	50 28 38 24 8.9	60 26 35 21.8 10.7	70 22 31 21 12.7	80 18 23 18 13.9	90 13 19 17 15.9	100 10 13 15 14.4		
DS	Span in feet Safe capacity Caution capacity Base-plate reaction ¹ Rocking-roller reaction ⁸	50 80 100 56 10.5	60 67 84 48 12.8	70 64 80 45 14.5	80 51 64 39 16.8	90 44 55 35 18.8	100 31 40 30 29-5	110 28 34 27 22.8	120 18 23 23 24.9	130 13 19 22 26,8	140 10 13 20 23.9
тз	Span in feet Safe capacity Caution capacity Base-plate reaction 1 Rocking-roller reaction 2	80 80 100 59 19.0	90 62 78 50 21.5	100 52 65 43.5 23.5	110 40 50 38 26.0	120 34 43 34.5 28.0	130 28 32 31 30.5	140 18 23 27 33.0	150 13 19 26 30.5	160 10 13 25 29.8	
DD	Span in feet Safe capacity Caution capacity Base-plate reaction ¹ Rocking-roller reaction ³	100 75 94 60 26.8	110 64 80 53 29.8	120 50 63 47 32.0	130 40 51 42 34.8	140 31 44 39 38.3	150 23 32 35 41.0	160 19 29 35 38.0	170 13 19 32 40.8	180 10 13 30 38.3	
тD	Span in feet. Safe capacity Caution capacity Base-plate reaction ¹ Rocking-roller reaction ²	110 80 100 68 35.8	120 70 88 62 39.3	130 57 75 57 43.3	140 48 61 58 46.8	150 40 50 49 50.8	160 31 43 48 51.0	170 23 31 44 49.3	180 18 23 42 47.0	190 12 16 40 46.0	
рт	Span in feet Safe capacity Caution capacity Base-plate reaction ¹ Rocking-roller reaction ²	130 80 100 73 47.5	140 67 87 67 50.8	150 65 81 55 54.8	160 56 70 64 59.0	170 50 63 63 59.8	180 40 50 60 59.5	190 31 44 58 56.8	200 23 31 54 55.5	210 18 23 51 56.3	
тт	Span in feet Safe capacity Caution capacity Base-plate reaction 1 Rocking-roller reaction 2	170 70 88 85 60	180 57 75 82 60	190 50 64 78 60	200 40 50 75 60	210 29 36 69 60					

² Includes weight of footwalks, ramps, bearings, and base plate. Live load assumed to be caution load on center line of bridge. ² Includes weight of rocking rollers, bearings, and template. Bridge launched without footwalks.

Access to Proposed Bridge

The proposed bridge lies on Budhigandaki Corridor to Project site. It is about 8 Km North from Machhakhola Bazar, 18Km from Aarughat Gorkhra and around 85-90 Km from Kathmandu Muglin Highway.

Site Visit/Proposed Axis

- We visited Budhigandaki Khola, on 08/11/2081 with a team of experts (structural engineer and survey engineer etc.) and technical team of DHCL for detailed field study.
- The bridge connects the Budhigandaki corridor to project site.

Feasibility and Importance of Bridge

- Bridge should be placed technically stable, economically reliable and socially safe. Our expert team visited the site and proposed the best alignment as per site condition and approved from the client side during the filed visit time.
- This bridge is constructed by Hydropower Company for the transportation of material during the construction phase.
- So this bridge is importance for this Company because of there is no other possible way to transfer material from one bank to another.

Fig: Topographic Map as per survey data

Geotechnical Study

Based on the Assumption, it is recommended to use **Open Foundation at left bank and Open foundation with anchor rebar on rock at right bank** for this bridge. Bearing capacity of soil at foundation level =420KN/m2 assumed

		Date: 19/11/2091
Client:		Date: 13/11/2001
Proiect:		
Location:		
Sample Details and D5) Results	
Sample Location	D50 (mm)	
Jpper	0.301	
Vid	0.149	
Lower	0.195	
nterpretation of Resul	s:	
Upper Sample:		
The D50 value of 0.301	mm suggests a coarser sand composition.	
Mid Sample:		
The D50 value of 0.149	mm indicates a finer particle distribution.	
Lower Sample:		
The D50 value of 0.195	nm shows a moderately fine sand composition	l.
Constanting		

The D50 values indicate varying particle sizes across locations. These values help understand the gradation and suitability of sand.Further analysis can be conducted for more detailed insights.

Bridge Design

= 14 bay x 3.048m=42.68m TSR3/DDR bailey bridge

General Arrangement

Sub Structure Details

Sub Structure Details

River Training Works

Approach Plan

Summary of Cost Estimate

		Summary of	f Cost Estimate with District Rate of Gorkha	
Name of Br	idge: Budhi Gandaki Khola Baile	y Bridge		Span=1 x 42.68m
S.No	Description	Amount	In words	Remarks
1	Provisional Sum	436,381.58	Four Hundred Thirty Six Thousand Three Hundred Eighty One Rupees and Fifty Eight Paisa	
2	General Item	235,000.00	Two Hundred Thirty Five Thousand Rupees and No Paisa	
3	Foundation Works	4,839,915.84	Four Million Eight Hundred Thirty Nine Thousand Nine Hundred Fifteen Rupees and Eighty Four Paisa	
4	Sub-Structural Works	5,454,966.94	Five Million Four Hundred Fifty Four Thousand Nine Hundred Sixty Six Rupees and Ninety Four Paisa	
5	Super-Structural Works	17,940,000.00	Seventeen Million Nine Hundred Forty Thousand Rupees and No Paisa	78 ton by 230/Kg
6	River Training Works	3,957,173.47	Three Million Nine Hundred Fifty Seven Thousand One Hundred Seventy Three Rupees and Forty Six Paisa	
7 Approach Road 27,471,962.87		27,471,962.87	Twenty Seven Million Four Hundred Seventy One Thousand Nine Hundred Sixty Two Rupees and Eighty Seven Paisa	
8 Miscellaneous Works 1,587,307.24		1,587,307.24	One Million Five Hundred Eighty Seven Thousand Three Hundred Seven Rupees and Twenty Four Paisa	
9	Day Works	775,538.28	Seven Hundred Seventy Five Thousand Five Hundred Thirty Eight Rupees and Twenty Eight Paisa	
Total of 2 to	o 9	62,261,864.64	Sixty Two Million Two Hundred Sixty One Thousand Eight Hundred Sixty Four Rupees and Sixty Three Paisa	
Provisional	Sum	436,381.58	Four Hundred Thirty Six Thousand Three Hundred Eighty One Rupees and Fifty Eight Paisa	
Total includ	ding P.S.	62,698,246.22	Sixty Two Million Six Hundred Ninety Eight Thousand Two Hundred Forty Six Rupees and Twenty One Paisa	
VAT @ 13%	of Total	8,094,042.40	Eight Million Ninety Four Thousand Forty Two Rupees and Forty Paisa	
Grand Total including VAT		70,792,288.62	Seventy Million Seven Hundred Ninety Two Thousand Two Hundred Eighty Eight Rupees and Sixty Two Paisa	
Cost per m	span	1,658,675.93	One Million Six Hundred Fifty Eight Thousand Six Hundred Seventy Five Rupees and Ninety Two Paisa	
Cost per m span(Without VAT) 1,46		1,469,031.07	One Million Four Hundred Sixty Nine Thousand Thirty One Rupees and Seven Paisa	
Cost per m span (Without Approach Road and River Training Work)		732,640.81	Seven Hundred Thirty Two Thousand Six Hundred Forty Rupees and Eighty One Paisa	

Summary of Cost Estimate

-							
		Summary of Cost Estin	nate ignoring the local material cost				
Name o	f Bridge: Budhi Gandaki Khola Bai	ley Bridge		Span=1 x 42.68m			
S.No	Description	Amount	In words	Remarks			
1	Provisional Sum	246,998.09	Two Hundred Forty Six Thousand Nine Hundred Ninety Eight Rupees and Nine Paisa		Co	nsider	
2	General Item	235,000.00	Two Hundred Thirty Five Thousand Rupees and No Paisa		Sand	locally available	50%
3	Foundation Works	4,497,407.89	Four Million Four Hundred Ninety Seven Thousand Four Hundred Seven Rupees and Eighty Nine Paisa		Rubble stone	locally available	20%
4	Sub-Structural Works	4,824,619.80	Four Million Eight Hundred Twenty Four Thousand Six Hundred Nineteen Rupees and Eighty Paisa		Crushed Aggregate		0%
5	Super-Structural Works			78 ton by 230/Kg	20-40mm	mobile crusher	50%
6	River Training Works	2,931,881.68	Two Million Nine Hundred Thirty One Thousand Eight Hundred Eighty One Rupees and Sixty Seven Paisa		10-20mm	mobile crusher	50%
7	Approach Road	10,968,088.01	Ten Million Nine Hundred Sixty Eight Thousand Eighty Eight Rupees and One Cent	50% masonry and gabion	5-10mm	mobile crusher	50%
8	Miscellaneous Works	1,561,310.88	One Million Five Hundred Sixty One Thousand Three Hundred Ten Rupees and Eighty Eight Paisa		River Gravel (chips)	mobile crusher	50%
Total of	2 to 8	25,018,308.26	Twenty Five Million Eighteen Thousand Three Hundred Eight Rupees and Twenty Five Paisa		Water	River userd	0%
Provisio	nal Sum	246,998.09	Two Hundred Forty Six Thousand Nine Hundred Ninety Eight Rupees and Nine Paisa		Back Filling Soil	locally available	20%
Total in	cluding P.S.	25,265,306.35	Twenty Five Million Two Hundred Sixty Five Thousand Three Hundred Six Rupees and Thirty Four Paisa		Sub-base material S1 or S2 type	locally available	20%
VAT @ 1	13% of Total	3,252,380.07	Three Million Two Hundred Fifty Two Thousand Three Hundred Eighty Rupees and Seven Paisa				
Grand T	otal including VAT	28,517,686.42	Twenty Eight Million Five Hundred Seventeen Thousand Six Hundred Eighty Six Rupees and Forty Two Paisa				
Cost per m span 668,174.		668,174.47	Six Hundred Sixty Eight Thousand One Hundred Seventy Four Rupees and Forty Seven Paisa				
Cost per m span(Without VAT) 591,970.		591,970.63	Five Hundred Ninety One Thousand Nine Hundred Seventy Rupees and Sixty Two Paisa				
Cost per m span (Without Approach Road and River Training Work)		266,291.86	Two Hundred Sixty Six Thousand Two Hundred Ninety One Rupees and Eighty Six Paisa				

Minutes and verification

आज मिली २०८९ / १९ ठाते राम्या यस दुदि राण्डकी त्योलामा वेली दिाजको सम्भे, दोभाग हाइड्रोपाव अन्यति लिगिलंड, टन्डोल, काठमाण्डीको छार्यमम अन्तर्ग र्याह कथातियहकको संहल्दमा सम्पन्ध aprular imines, casim, anzniustant 7/122 Arua あず 6117, 21 1-1151 3)1011 912101 2/055 9701595257 धार्च 9842468665 AF y. Maps 9842466580 11 Tal 2105' F QI. DINS. 9761607957 11 11 9842468665

Implementation Phase: Layout

	11400	Oldo	
4. Coordinate of Bl	M	BM1	3131758.983N,
			294449.583E
BM2	3131769.475N,	BM3	3131733.111N,
	294459.56E		294494.015E
BM4	3131716.832N,	Reference/Axis Point	BM1-right axis=24.984m
	294474.52E		Bm2-Right axis=12.035m
			Bm3-Left axis=1.94m
			Bm4-Left axis=26.97m
		_ /	- · · · · · · ·

THANK YOU